Paperless Recorder

Supmea

Headquarters

5th floor,Building 4,Singapore Hangzhou Science Technology Park,No. 6 street, Hangzhou Economic Development Area,Hangzhou 310018,China

Singapore 2 Venture Drive #11-30 Vision Exchange Singapore

info@supmea.com
 www.supmea.com
 Supmea Automation Co.,Ltd.

Preface

Thank you for purchasing paperless recorder. Please read this manual carefully before operating and using it correctly to avoid unnecessary losses caused by false operation.

Note

- Modification of this manual's contents will not be notified as a result of some factors, such as function upgrading.
- We try our best to guarantee that the manual content is accurate, if you find something wrong or incorrect, please contact us.
- This product is forbidden to use in explosion-proof occasions.

Version

U-SUP-RN5000/RN6000/RN6500-EN3

Safety Precautions

In order to use this product safely, be sure to follow the safety precautions described.

About this manual

- Please submit this manual to the operator for reading.
- Please read the operation manual carefully before applying the instrument. On the precondition of full understanding.
- This manual only describes the functions of the product. The company does not guarantee that the product will be suitable for a particular use by the user.

Precautions for protection, safety and modification of this product

- To ensure safe use of this product and the systems it controls, Please read carefully the operation manual and understand the correct application methods before putting into operation, to avoid unnecessary losses due to operation mistakes. If the instrument is operated in other ways not described in the manual, the protections that the instrument give may be destroyed, and the failures and accidents incurred due to violation of precautions shall not be borne by our company.
- When installing lightning protection devices for this product and its control system, or designing and installing separate safety protection circuits for this product and its control system, it needs to be implemented by other devices.
- If you need to replace parts of the product, please use the model specifications specified by the company.
- This product is not intended for use in systems that are directly related to
 personal safety.Such as nuclear power equipment, equipment using
 radioactivity, railway systems, aviation equipment, marine equipment,
 aviation equipment and medical equipment.If applied, it is the responsibility
 of the user to use additional equipment or systems to ensure personal
 safety.
- Do not modify this product.

• The following safety signs are used in this manual:

Hazard, if not taken with appropriate precautions, will result in serious personal injury, product damage or major property damage.

Warning:Pay special attention to the important information linked to product or particular part in the operation manual.

- Confirm if the supply voltage is in consistent with the rated voltage before operation.
- Don't use the instrument in a flammable and combustible or steam area.
- To prevent from electric shock, operation mistake, a good grounding protection must be made.
- Thunder prevention engineering facilities must be well managed: the shared grounding network shall be grounded at is-electric level, shielded, wires shall be located rationally, SPD surge protector shall be applied properly.
- Some inner parts may carry high voltage. Do not open the square panel in the front except our company personnel or maintenance personnel acknowledged by our company, to avoid electric shock.
- Cut off electric powers before making any checks, to avoid electric shock.
- Check the condition of the terminal screws regularly. If it is loose, please tighten it before use.
- It is not allowed to disassemble, process, modify or repair the product without authorization, otherwise it may cause abnormal operation, electric shock or fire accident.
- Wipe the product with a dry cotton cloth. Do not use alcohol, benzine or other organic solvents. Prevent all kinds of liquid from splashing on the product. If the product falls into the water, please cut off the power immediately, otherwise there will be leakage, electric shock or even a fire accident.

- Please check the grounding protection State regularly. Do not operate if you think that the protection measures such as grounding protection and fuses are not perfect.
- Ventilation holes on the product housing must be kept clear to avoid malfunctions due to high temperatures, abnormal operation, shortened life and fire.
- Please strictly follow the instructions in this manual, otherwise the product's protective device may be damaged.
- Don't use the instrument if it is found damaged or deformed at opening of package.
- Prevent dust, wire end, iron fines or other objects from entering the instrument during installation, otherwise, it will cause abnormal movement or failure.
- During operation, to modify configuration, signal output, startup, stop, operation safety shall be fully considered. Operation mistakes may lead to failure and even destruction of the instrument and controlled equipment.
- Each part of the instrument has a certain lifetime, which must be maintained and repaired on a regular basis for long-time use.
- The product shall be scrapped as industrial wastes, to prevent environment pollution.
- When not using this product, be sure to turn off the power switch.
- If you find smoke from the product, smell odor, abnormal noise, etc., please turn off the power switch immediately and contact the company in time.

Disclaimer

- The company does not make any guarantees for the terms outside the scope of this product warranty.
- This company is not responsible for damage to the instrument or loss of parts or unpredictable damage caused directly or indirectly by improper operation of the user.

No.	Name	Quantity	Note
1	Paperless recorder	1	
2	Manual	1	
3	Standard accessory package	1	
4	Certificate	1	
5	U disk	1	

After opening the box, please confirm the package contents before starting the operation. If you find that the model and quantity are incorrect or there is physical damage in appearance, please contact us.

Contents

1 Introduction
1.1 Introduction 1
1.2 Principle
1.3 Main parameters2
2 Structure and dimensions
3 Installation7
3.1 Arrival inspection7
3.2 Installation condition8
3.3 Installation method9
4 Electrical connection
4.1 Ground connection10
4.2 Terminal blocks10
4.3 Terminal instructions11
4.4 Wiring instructions15
5 Basic operation
5.1 key display
5.2 Interface description
6 Settings
6.1 System settings
6.2 Input settings
6.3 Output settings
6.4 Function settings
6.5 Flow settings
6.6 Accumulation settings 50
7 Fault analysis and troubleshooting52
7.1 Regular inspection and maintenance52
7.2 Fault handling52
8 Communication
Appendix : Calculation of flow coefficient K

1 Introduction

1.1 Introduction

This industrial paperless recorder is equipped with a 7-inch TFT full-color high-contrast liquid crystal display, featuring a resolution of 1024*600. It seamlessly integrates various industrial standard signals, such as current, voltage, thermocouples, thermistors, resistors, and frequency (customizable), enabling real-time display, recording, limit monitoring, report generation, data communication, signal transmission, and functions like flow accumulation, as well as flow temperature and pressure compensation. It is widely applicable in industries such as metallurgy, petrochemicals, construction materials, papermaking, power, food, pharmaceuticals, and industrial water treatment.

This product supports up to 48 analog universal input channels, 6 frequency inputs (customizable), 22 relay alarm outputs, and 6 transmitter outputs (supporting (0~10) mA, (4~20) mA, (0~20) mA, (0~5) V, (1~5) V, (0~10) V outputs). It also provides a 250mA power supply output, 2 RS485 communication interfaces, 1 Ethernet communication interface, 1 USB data transfer interface, and 128M of internal super-large storage. The product supports functions such as Ethernet communication and remote online upgrading.

Model	RN5000	RN6000	RN6500
		1-48 channels	1-48 channels
Analog input	1-12 channels	(Channels not	(Channels
		isolated)	isolated)
Analog output	6 channels	6 channels	6 channels
Relay output	22 channels	22 channels	22 channels
RS485 output	Yes	Yes	Yes
RS485 input	No	Customized	Customized
Frequency input	No	Customized	Customized
Ethernet	Customized	Yes	Yes
Feed output	Yes	Yes	Yes

 Table 1 Comparison of function

Model	RN5000	RN6000	RN6500
Flow (temperature and pressure compensation)	No	Yes	Yes
Accumulation and report	Customized	Yes	Yes
Internal storage	128M	128M	128M
Customizable display	Yes	Yes	Yes

1.2 Principle

The principle of the paperless recorder is to capture and record data or computed data with time as the primary axis within the internal storage system of the instrument. This method eliminates the consumption of traditional recording tools such as paper and ink. The collected information is stored in the internal memory of the instrument, processed through calculations and simulations, and then displayed on a liquid crystal screen. The screen offers a rich array of display options, including values, curve graphs, bar charts, and alarm states.

1.3 Main parameters

1.3.1 Input

Table 2 DC vollage/current inpu	Table 2	DC voltage/current	input
---------------------------------	---------	--------------------	-------

Туре	Maximum permitted error (%F.S)	
(0~5) V		
(1~5) V		
(-5~5) V		
(Only RN6500 supports)		
(0~10) V	±0.1	
(2~10) V		
(-10~10) V		
(Only RN6500 supports)		
(0~100) mV		

Туре	Maximum permitted error (%F.S)	
(0~20) mV		
(-20~20) mV	±0.2	
(-100~100) mV		
(4~20) mA		
(0~20) mA	±0.1	
(0~10) mA		

Table 3 Thermocouple input (excluding cold-side error)

Туре	Measurement range (℃)	Maximum permitted error (%F.S)
В	600 ~ 1800	±2.4
E	-200 ~ 1000	±2.4
J	-200 ~ 1200	±2.4
K	-200 ~ -100	±3.3
ň	-100 ~ 1300	±2.0
	-50 ~ 100	±3.7
S	100 ~ 300	±2.0
	300 ~ 1600	±1.5
-	-200 ~ -100	±1.9
I	-100 ~ 400	±1.6
	-50 ~ 100	±3.7
R	100 ~ 300	±2.0
	300 ~ 1600	±1.5
Ν	-200 ~ 1300	±3.0
WRe5-26	0~ 2310	±4.0
WRe3-25	0~ 2315	±4.0

Table 4 Thermoresistive input

Туре	Measurement range	Maximum permitted error
	(°C)	(°C)
PT100	-200 ~ 650	±1.0
JPT100	-200 ~ 510	±1.0

Туре	Measurement range (℃)	Maximum permitted error (℃)
PT1000	-200 ~ 200	±0.3
Cu50	-50 ~ 150	±1.0
Cu53	-50 ~ 150	±1.0
Cu100	-50 ~ 150	±1.0

Note: Special-purpose resistance temperature detectors (RTDs) can be customized.

Table 5 Resistance input

Туре	Measurement range (Ω)	Maximum permitted error (Ω)	
(0~400) Ω	0~400	±0.3	
(0~4000) Ω	0~4000	±3	

Table 6 Frequency input (customized)

		Response	Measurement range	Maximum permitted error
туре	Amplitude	period	(Hz)	(Hz)
Fr (0~15) V		1~1000	±1	
	(0~15) V	IS	1001~10000	±10
Note: When the voltage is less than 1V, it is considered a low level; when the				

voltage is between 4.5V and 15V, it is considered a high level.

1.3.2 Output

Table 7 Alarm output

Туре	Measureme nt range	Contact type	Contact capacity	Response period
Alarm output	0/1	SPST Normally open contact	2A,250VAC (resistive load)	1s

Table 8 Current output

Туре	Measurement range	Accuracy	Load resistance
Active current output	(4~20)mA	±0.025mA	≤750Ω
	(0~20)mA	±0.025mA	≤750Ω
	(0~10)mA	±0.025mA	≤1500Ω

Table 9 Feed output			
Feed type	250mA, 24 VDC		
Table 10 Communication output			
Communication	1-channel RS485 communication output interface,		
interface and	Modbus_RTU communication protocol		
communication 1-channel Ethernet communication output interface,			
protocol	protocol Modbus_TCP communication protocol		
Note: 1-channel RS485 communication input can be customized.			

Table 9 Feed output

1.3.3 Power supply

Table 11	Power supply
----------	--------------

Power supply	AC: (85~264) VAC ,50/60Hz	
	DC: 24VDC±10%	
Power consumption	≤20W	

1.3.4 Environmental condition

	Temperature: 0℃-50℃	
	Relative humidity: 10%-85% (No condensation);	
Working environment	Avoid corrosive gases.	
	Note: In case of poor working environment, it is necessary	
	to specify it when ordering.	
Storage environment	Temperature: -20℃-60℃;	
	Relative humidity: 5%-95% (No condensation)	

1.3.5 Other parameters

Table 13 Other parameters

Internal storage	128M Byte		
Extornal storage	Supports USB flash drive (standard USB 2.0		
External storage	communication interface).		
Sampling period	1s		
Recording interval	Adjustable at 1s, 2s, 5s, 10s, 15s, 30s, 1min, 2min, 5min,		
	10min, 15min, 30min, and 1h.		

2 Structure and dimensions

Dimensions: 193mm (W) x 162mm (H) x 138mm (D) Enclosure material: ABS (Acrylonitrile Butadiene Styrene) Panel material: PMMA (Polymethyl Methacrylate)

Fig.1 Product dimensions (unit: mm)

3 Installation

This chapter describes the installation and wiring methods of this instrument. It is necessary for technicians to learn when they use the instrument for the first time. This is a procedure which enables the instrument to normal operation, as the table

Fig.2 Flow diagram from unpacking to operation

3.1 Arrival inspection

Upon receiving the product, the user should first inspect the quality of the packaging. The packaging box should be intact and undamaged with clear labels. If there is obvious damage to the packaging, the user should promptly contact the storage and transportation department to clarify the issue and responsibility, and inform our company. If there are no issues such as damage to the packaging, the user can then open the box, remove the product, and check its completeness.

3.2 Installation condition

This instrument is a panel-mounted type and should be installed indoors or within a control cabinet, ensuring it is shielded from wind, rain, and direct sunlight.

Please install at the following location(s):

- Well-ventilated locations: To prevent the internal temperature of the instrument from rising, please install in a well-ventilated area.
- Locations with minimal mechanical vibration: Please choose a location with minimal mechanical vibration for installation.

Please avoid installing at the following locations:

- Direct sunlight or near heat sources: Choose a location with minimal temperature fluctuations, preferably around 23°C (73.4°F). Exposure to direct sunlight or heat sources may negatively affect the instrument's internal components.
- Locations with high concentrations of oil, steam, moisture, dust, or corrosive gases: These elements can negatively affect the instrument's performance.
- Close proximity to electromagnetic radiation sources: Keep magnetic components or magnets away from the instrument. Exposure to strong electromagnetic radiation sources can cause display errors due to the influence of the magnetic field.
- Maintain a distance of at least 20 cm (7.87 inches) between the instrument and any radiofrequency generators during operation to prevent abnormal instrument behavior.

Note:

• When moving the instrument from a location with low temperature and humidity to one with high temperature and humidity, a significant temperature change may cause condensation, leading to measurement errors when using thermocouple inputs. In such cases, please allow the instrument to acclimate to the surrounding environment for at least one hour before use.

• Prolonged use in high-temperature conditions may shorten the lifespan of the LCD (resulting in reduced image quality, etc.). Please avoid using the instrument in high-temperature conditions (above 40°C/104°F) whenever possible.

3.3 Installation method

This recorder is designed for indoor panel mounting. The installation procedure is as follows:

(1) Cut an opening in the panel (with dimensions of 138mm x 138mm). Ensure that the area around the cut-out is clean, smooth, and free of burrs.

Fig.3 Cutout dimensions

(2) Insert the recorder into the cutout, and make sure that the recorder is tightly secured against the panel.

(3) Place the four mounting brackets that come with the recorder on both sides of the instrument, and then use a Phillips screwdriver to tighten the screws on the control cabinet.

4 Electrical connection

4.1 Ground connection

Please operate with the recorder powered off. Ensure that the ground wire is connected before wiring.

4.2 Terminal blocks

The paperless recorder features a total of five slots, with different specifications accommodating different board configurations (refer to Figure 5):

(1) Regular configuration: Slots 1 to 4 are equipped for universal inputs (up to 48 channels); Slot 5 is designated for a power interface, one feed power output, four relay outputs, two RS485 interfaces, and one Ethernet interface.

(2) The universal inputs can have a maximum of 48 channels, occupying slots 1 to 4, which leaves no room for frequency input and transmitter output configurations.

(3) When configuring transmitter outputs, frequency outputs, or increasing the number of relay output channels, Slot 4 will be occupied, which results in a reduction of the corresponding input channels.

Fig.5 Terminal schematic diagram

4.3 Terminal instructions

Terminal No.	Signal type	Description
Power		
		L: Phase line terminal
E、N、L	220VAC	N: Zero line terminal
		E: Ground terminal
		DC+: 24VDC+
NC、DC-、DC+	24VDC	DC-: 24VDC-
		NC: Undefined
	Signal ir	nput
A1, B1, C1	Universal input	Analog input channel 1
A2, B2, C2	Universal input	Analog input channel 2
A3, B3, C3	Universal input	Analog input channel 3
A4, B4, C4	Universal input	Analog input channel 4
A5, B5, C5	Universal input	Analog input channel 5
A6, B6, C6	Universal input	Analog input channel 6
A7, B7, C7	Universal input	Analog input channel 7
A8, B8, C8	Universal input	Analog input channel 8
A9, B9, C9	Universal input	Analog input channel 9
A10, B10, C10	Universal input	Analog input channel 10
A11, B11, C11	Universal input	Analog input channel 11
A12, B12, C12	Universal input	Analog input channel 12
A13, B13, C13	Universal input	Analog input channel 13
A14, B14, C14	Universal input	Analog input channel 14
A15, B15, C15	Universal input	Analog input channel 15
A16, B16, C16	Universal input	Analog input channel 16
A17, B17, C17	Universal input	Analog input channel 17
A18, B18, C18	Universal input	Analog input channel 18
A19, B19, C19	Universal input	Analog input channel 19
A20, B20, C20	Universal input	Analog input channel 20
A21, B21, C21	Universal input	Analog input channel 21

Table 14 Regular configuration terminal instructions

Terminal No.	Signal type	Description	
A22, B22, C22	Universal input	Analog input channel 22	
A23, B23, C23	Universal input	Analog input channel 23	
A24, B24, C24	Universal input	Analog input channel 24	
A25, B25, C25	Universal input	Analog input channel 25	
A26, B26, C26	Universal input	Analog input channel 26	
A27, B27, C27	Universal input	Analog input channel 27	
A28, B28, C28	Universal input	Analog input channel 28	
A29, B29, C29	Universal input	Analog input channel 29	
A30, B30, C30	Universal input	Analog input channel 30	
A31, B31, C31	Universal input	Analog input channel 31	
A32, B32, C32	Universal input	Analog input channel 32	
A33, B33, C33	Universal input	Analog input channel 33	
A34, B34, C34	Universal input	Analog input channel 34	
A35, B35, C35	Universal input	Analog input channel 35	
A36, B36, C36	Universal input	Analog input channel 36	
A37, B37, C37	Universal input	Analog input channel 37	
A38, B38, C38	Universal input	Analog input channel 38	
A39, B39, C39	Universal input	Analog input channel 39	
A40, B40, C40	Universal input	Analog input channel 40	
A41, B41, C41	Universal input	Analog input channel 41	
A42, B42, C42	Universal input	Analog input channel 42	
A43, B43, C43	Universal input	Analog input channel 43	
A44, B44, C44	Universal input	Analog input channel 44	
A45, B45, C45	Universal input	Analog input channel 45	
A46, B46, C46	Universal input	Analog input channel 46	
A47, B47, C47	Universal input	Analog input channel 47	
A48, B48, C48	Universal input	Analog input channel 48	
	Ethernet		
Ethernet	LAN	Ethernet	
	RS485		
A1	485+	RS485 input	

Terminal No.	Signal type	Description
B1	485-	RS485 input
A2	485+	RS485 output
B2	485-	RS485output
Feed output		
P+	/	24V+
P-	/	24V-
Alarm output		
DO1	Relay	Alarm output channel 1
DO2	Relay	Alarm output channel 2
DO3	Relay	Alarm output channel 3
DO4	Relay	Alarm output channel 4
СОМ	/	Alarm commons

Table 15 Enhanced output terminal instructions

Terminal No.	Signal type	Description	
Multifunctional frequency input			
1F+, 1F-	Frequency input	Frequency input channel 1	
2F+, 2F-	Frequency input	Frequency input channel 2	
3F+, 3F-	Frequency input	Frequency input channel 3	
4F+, 4F-	Frequency input	Frequency input channel 4	
5F+, 5F-	Frequency input	Frequency input channel 5	
6F+, 6F-	Frequency input	Frequency input channel 6	
1 +, 1 -	Current/voltage output	Analog output channel 1	
21+, 21-	Current/voltage output	Analog output channel 2	
31+, 31-	Current/voltage output	Analog output channel 3	
4 +, 4 -	Current/voltage output	Analog output channel 4	
51+,51-	Current/voltage output	Analog output channel 5	
6l+, 6l-	Current/voltage output	Analog output channel 6	
05R, 05R	Relay	Alarm output channel 5	
06R, 06R	Relay	Alarm output channel 6	
07R, 07R	Relay	Alarm output channel 7	
08R, 08R	Relay	Alarm output channel 8	

Terminal No.	Signal type	Description
09R, 09R	Relay	Alarm output channel 9
10R, 10R	Relay	Alarm output channel 10
	Multi functiona	al Al input
A37, B37, C37	Universal input	Analog input channel 37
A38, B38, C38	Universal input	Analog input channel 38
A39, B39, C39	Universal input	Analog input channel 39
A40, B40, C40	Universal input	Analog input channel 40
1 +,1 -	Current/voltage output	Analog output channel 1
21+,21-	Current/voltage output	Analog output channel 2
31+, 31-	Current/voltage output	Analog output channel 3
4 +, 4 -	Current/voltage output	Analog output channel 4
51+,51-	Current/voltage output	Analog output channel 5
61+, 61-	Current/voltage output	Analog output channel 6
05R, 05R	Relay	Alarm output channel 5
06R, 06R	Relay	Alarm output channel 6
07R, 07R	Relay	Alarm output channel 7
08R, 08R	Relay	Alarm output channel 8
09R, 09R	Relay	Alarm output channel 9
10R, 10R	Relay	Alarm output channel 10
	Alarm ou	itput
05R, 05R	Relay	Alarm output channel 5
06R, 06R	Relay	Alarm output channel 6
07R, 07R	Relay	Alarm output channel 7
08R, 08R	Relay	Alarm output channel 8
09R, 09R	Relay	Alarm output channel 9
10R, 10R	Relay	Alarm output channel 10
11R,11R	Relay	Alarm output channel 11
12R,12R	Relay	Alarm output channel 12
13R, 13R	Relay	Alarm output channel 13
14R,14R	Relay	Alarm output channel 14
15R,15R	Relay	Alarm output channel 15
16R, 16R	Relay	Alarm output channel 16

Terminal No.	Signal type	Description
17R, 17R	Relay	Alarm output channel 17
18R, 18R	Relay	Alarm output channel 18
19R, 19R	Relay	Alarm output channel 19
20R, 20R	Relay	Alarm output channel 20
21R, 21R	Relay	Alarm output channel 21
22R, 22R	Relay	Alarm output channel 22

4.4 Wiring instructions

5 Basic operation

5.1 key display

Panel component distribution of paperless recorder is shown in figure 6.

Fig.6 Panel component distribution

Table 17	Key Definition
----------	----------------

Label	Key Name	Function
	UP	 In the main page, switch to the previous cyclic display. In the menu interface, select a menu item. In the settings mode, select the settings parameters.
\bigtriangledown	Down	 In the main page, switch to the next cyclic display. In the real-time curve, select a channel. In the menu interface, select a menu. In the settings mode, select the settings parameters.
	Left	 In the main page, switch display screens: overview, group, single, bar, real-time curve, flow, accrue, and accrue list. In the settings mode, modify the parameter values.

Label	Key Name	Function
		• In the main page, switch display screens:
		overview, group, single, bar, real-time curve,
	Right	flow, accrue, and accrue list.
		 In the settings mode, modify the relevant
		values.
		 On the main page, long press for 3 seconds
\sim	Confirm	to enter the first-level menu.
<u>Cok</u>		 In the menu interface, confirm the
		modification.
		• On the main page, long press for 3 seconds
		to enter the first-level menu;
	C Cancel	 Confirm the modification on the menu
		interface.
		• On the menu interface, return to the upper
		level between related upper and lower
		interfaces.
		 In the settings mode, cancel the settings.
		 Long press the key combination for 3
	Up + Down	seconds to capture a screenshot.

5.2 Interface description

The user interface mainly consists of the main page, the first-level menu, and the second-level menu.

Main page: overview, group, single, bar, real-time curve,flow, accrue, and accrue list., among which the flow, accrue, and accrue list. are optional features. **First-level menu:** historical curves, alarm logs, powerdown logs, operation logs, export data, instrument about, and settings.

Second-level menu: system settings, input settings, output settings, function settings, flow settings, and accumulation settings, among which flow settings and accumulation settings are optional features.

5.2.1 Main page

On the main page, press *Left / Right key* to switch display screens: overview, group, single, bar, real-time curve, flow, accrue, and accrue list.

(1) Navigation bar

Fig.7 Navigation bar

① : Running screen name.

② : File recording identifier, indicating that the file is being recorded.

③ : Loop display identifier, indicating the open state of the loop display mode on the patrol display screen.

- ④ : Alarm reminder, displayed when an over-limit alarm occurs.
- (5) : USB flash disk reminder, prompted when a USB flash disk is inserted.

6 : key battery (for internal clock power supply) level indicator, displaying the remaining battery level of the internal key battery in real-time.

 \bigcirc : System time, displaying the date and time of the instrument's operation.

(2) Overview / Group screen

The overview screen displays the state of all channels, including tag names, units, and instantaneous values. Fig.8 shows the overview screen for a 44-channel product screen.

The group screen display screen differs from the overview screen in that it allows for the setting of the number of channels displayed on a single screen (with options for 4, 6, 12, 16, and 24 channels), and can switch between displayed channel groups using the *UP/Down key*.

Fig.8 Overview screen (44-channel product screen)

① : Channel tap, configurable.

② : Instantaneous value of engineering quantity. Calculated formula:

Instantaneous value of engineering quantity = (Original signal value - Lower limit of signal range)/Full scale of signal * Input range set in the settings.

(Note: The full scale of the signal refers to the difference between the upper and lower limits, e.g., for a 4-20 mA signal, the full scale is 20mA - 4mA = 16mA. The input range set refers to the difference between the upper and lower limits in the second-level menu settings.)

③ : Signal unit, configurable.

④ : Alarm state indicator: green indicates no alarm, red indicates alarm. The four lights from top to bottom represent: high-high alarm, high alarm, low alarm, and low-low alarm.

(3) Single screen

The single-channel display screen can be configured to cycle through displays at fixed intervals or switch between channels manually by pressing the *Up/Down key*.

Fig.9 Single screen

① :Channel tap, configurable.

② :Instantaneous value of engineering quantity.

③ :Instantaneous raw signal value and unit.

④ :Engineering quantity unit, configurable.

(5) :Percentage bar graph of engineering quantity, where the percentage displayed = instantaneous value of engineering quantity/full scale of input setting.

6 :Alarm state indicator lights: green indicates no alarm and red indicates alarm; the four lights from top to bottom represent high-high alarm, high alarm, low alarm, and low-low alarm respectively.

(7) :Instantaneous value of engineering quantity.

(8) :When the channel input signal is a thermocouple signal, the display shows the cold junction temperature, as shown in the figure below.

Fig.10 Thermocouple signal single screen

(4) Bar graph screen

The bar graph screen defaults to displaying six channels of signals as a group. Pressing the *Up/Down key* switches between the current and previous/next group. The orientation of the bar graph can be set to vertical or horizontal in the configuration.

Fig.11 Bar graph screen

① : Channel tap, configurable.

(2) : Engineering quantity percentage bar graph, displaying percentage = instantaneous value of engineering quantity/input set full scale, bar graph color is configurable.

③ : Engineering quantity unit, configurable.

④ : Instantaneous value of engineering quantity, configurable.

(5) : Alarm State indicator lights: green indicates no alarm, and red indicates alarm; the four lights from top to bottom represent high-high alarm, high alarm, low alarm, and low-low alarm, respectively.

(5) Real-time curve screen

The real-time curve screen displays 6 channels of signals as a group by default. The group can be switched by *UP key*, and the channel can be selected by *Down key*. The current channel curve can be selected to display or hide by pressing the *Confirm key*.

Fig.12 Real-time curve screen

- ① : Real-time curve, color configurable.
- ② : Channel tap, configurable.
- ③ : Instantaneous value of engineering quantity.

(4) : Real-time curve display State box. When a green " $\sqrt{}$ " appears within the box, the channel displays real-time curves; when the green " $\sqrt{}$ " is removed, the real-time curve for that channel is hidden. Press the Minus key to select a channel, and the Confirm key to switch between the display/hide of the current channel's curve.

5 : Unit of engineering quantity, configurable.

(6) : Time scale on the coordinate axis dynamically adjusts based on the storage interval, allowing for a full-screen display of up to 800 data points.

(6) Flow screen

The flow screen defaults to displaying a group of four channel signals. Press the *Up/Down key* to switch between displaying the previous or next group.

Fig.13 Flow screen

- 1 : Channel tap.
- ② : Instantaneous value of flow engineering quantity.
- ③ : Compensation temperature, used for calculation compensation.
- ④ : Compensation pressure, used for calculation compensation.
- 5 : Flow unit, configurable.
- (6) : Alarm state indicator lights: green indicates no alarm, red indicates alarm;

the four lights from top to bottom represent high-high alarm, high alarm, low alarm, and low-low alarm.

- ⑦ : Accumulated value unit.
- 8 : Total accumulated value of the channel.

(7) Accrue screen

The accrue screen defaults to showing four channels of signals as a group. Press the *Up/Down key* to switch between displaying the previous or next group.

- ① : Channel tap.
- ② : Total accrue value.
- ③ : Instantaneous value.
- ④ : Accrue value unit.
- (5) : Instantaneous value unit.

(8) Accrue list screen

Fig.15 Accrue list screen

: Channel tagp press the *Up key* to enter the selected state, press the *Left / Right key* to switch channels.

- ② : Report sequence number.
- ③ : Report type, including hour report, daily report, and monthly report.
- ④ : Accrue value represents the accumulated value under the current report

type, and the real-time report represents the accumulated value in one hour.

5.2.2 First-level Menu

In the main page, long press the *OK key* to enter the first-level menu, where you can view history curves, alarm records, powerdown records, operation logs, data export, instrument about, and enter the setting mode (second-level menu).

Accrue list	🔹 🙆 🗯 😔 🗰	2023-05-28 14:06:02
Channel1	Hour Report	0/0
NO.	Time	Accrue Value
≪gHistory		
Alarm		
👸 Powerdown		
Operation		
Export		
🖹 About		
oSettings		

Fig.16 Entering the first-level menu

(1) History curves

The history curve screen defaults to displaying a group of six channel signals.

Fig.17 History curves screen

Move the cursor using the *UP key* to browse data, set time axis interval multiples, and select historical data time.

① : Historical time: Real-time display ②the time corresponding to the historical data time scale line at this moment on the time axis, or ④the time set for historical data time.

② : Historical data time scale line. Move the cursor to ② by pressing the "Plus" key, and then move the cursor horizontally by pressing the **Left/Right key** to select the corresponding historical data of that moment.

(3) : Time axis interval multiplier. Move the cursor to (3) by pressing the **Up key**, and then set the time axis multiplier by pressing the **Left/Right key**, which can be set to four intervals: x1, x2, x4, x8. As shown in the figure above, the time axis interval is x1, and the figure below shows the x4 time axis interval.

Fig.18 Time axis interval set to 4 times

④ : Historical data time setting. Move the cursor to ④ using the Up key and then press the OK key to enter the historical data time setting.

When exiting the settings for ②, ③, and ④ by moving the cursor with the Up key (i.e. no cursor displayed for ②, ③, and ④), press the *Left/Right key* to switch between displaying the previous/next group of channels. Press the *Down key* to select a channel, and at this moment, pressing the confirm key will enable you to configure whether the curve for the current channel is shown.

- 5 : Channel tap
- 6 : System time.

1: Historical curve display State box. When a green " \checkmark " appears within the box, the channel displays historical curves; when the green " \checkmark " is removed, the channel's history curve is hidden. Press the Minus key to select a channel, and the Confirm key to switch between the display/hide of the current channel's curve.

- 8 : Time scale axis.
- (9) : Historical curve, color can be customized.

(2) Alarm records

Fig.19 Alarm records screen

1 : Alarm record sequence number, with the top entry representing the most recent one.

- ② : Channel, alarm channel tag number.
- ③ : Alarm type: high-high alarm, high alarm, low alarm, low-low alarm.
- ④ : Alarm State: alarmed and cleared.
- (5) : Alarm time, displayed as "Year-Month-Day-Hour-Minute-Second".

(3) Powerdown records

Fig.20 Powerdown records screen

1 : Powerdown record sequence number, with the top entry representing the most recent one.

(2) :Power-down time, displayed as "Year-Month-Day-Hour-Minute-Secon d".

- ③ :Power-on time, shown as "Year-Month-Day-Hour-Minute-Second".
- ④ : Duration of powerdown, indicating the length of power failure.
- 5 : Total number of powerdown occurrences.
- 6 : Accumulated duration of powerdown.

(4) Operation logs

1	2	3
Operation		2023-05-28 13:51:02
NO.	Time	Event
0018	2023-05-28 13:49:09	Modify Basic Config
0017	2023-05-28 13:48:02	Modify Range
0016	2023-05-28 13:48:02	Modify Basic Config
0015	2023-05-28 13:47:51	Modify Basic Config
0014	2023-05-28 13:47:36	Modify Basic Config
0013	2023-05-28 13:45:58	Modify Basic Config
0012	2023-05-28 13:45:55	Modify Basic Config
0011	2023-05-28 13:45:49	Modify Basic Config
0010	2023-05-28 13:45:23	Modify Basic Config
0009	2023-05-28 13:41:39	Modify Basic Config
0008	2023-05-22 09:23:39	Modify Basic Config
0007	2023-05-22 09:23:36	Modify Basic Config
	Fig. 04 On another	

Fig.21 Operation log screen
① : Operation log sequence number, with the most recent record at the top.

② :Operation log time, displayed as "Year-Month-Day-Hour-Minute-Secon d".

③ : Operation items: modify base configuration, modify record interval, modify signal range, modify safety password, restore factory settings, export data file, modify system time, firmware upgrade, clear alarm information, clear power failure records, clear operation logs, and clear alarm logs.

(5) Export data

Fig.22 Export data screen

1 : Export all data in MDA/CSV formats. MDA and CSV are file formats, with MDA requiring a dedicated PC from our company for opening.

② : Export partial data in MDA/CSV format. Users can select to export data within a specific time range. Choose the desired start and end time, then click the **OK key** to proceed to the time setting interface.

Export	2023	-05-28 13:51:23
All (2023-05-22 08:25:47~2023-05-28 13:51:21	
Part c	Start Time	
All	2023-05-22 08:25:47	
Part	Ending Time	
Al	2023-05-28 13:51:21	
Powe		
Оре	OK	
Acc	керогся]

Fig.23 Select start time

Export									2023	-05-28	3 13:5	51:32
	All [202	3-05-22 0	8:25:47~	-2023-0	5-2	8 13:	51:	21			
	Part c											
	All	2022										
	Part	2023 2024	- 05 - 06	22 23	08 09		25 26		47 48			
	Powe											
	Ope		OK			0	Cance	el				
	Acc	Reports										

Fig.24 Start time setting

③ : Export alarm records, power-off records, operation records, and accumulated reports.

④ : USB flash disk State, which includes a total of 11 USB flash disk Statees: No USB, Idle, File opening failed, Exporting, File creation failed, File read failed, File verification failed, File does not exist, File write failed, File opening failed, and Failed to obtain file

(6) Instrument about

Fig.25 Instrument about

① : Mainboard and sub-board software and hardware version information.

 2 : Selection ID, composed of Channel Type (abbreviated in English) + Channel Number (2-digit number). The English abbreviations for channel types are as follows: Al: Analog Input; AO: Analog Output; DI: Digital Input; DO: Relay Output;
 FI: Frequency Signal Input; FLOW: Flow Channel; ACCU: Accumulation Channel.

③ : Product serial number, SN code.

④ : User manual QR code: Scanning the QR code with a mobile phone can retrieve an electronic version of the product manual.

(7) Settings

Configuration setup requires input of a security password to enter the second ary menu, default password is "0000". Users can navigate to [Settings] \rightarrow [System] \rightarrow [Password] to modify the custom password, please keep the

modified password securely. Should you inadvertently forget your password, please contact our company.

Accrue list			0 🎕	•	•	2023-05-28 13:51:51
Channel1		Hour	Report			0/0
NO.		Т	ime			Accrue Value
₩History	Ent	er Passv	vord			
Alarm						
👸 Powerdown						
@ Operation						
Export						
🖹 About		8	9			
⊚Settings 🔒	>>	0	Enter			

Fig.26 Input password

5.2.3 Second-level menu

After selecting the **[Settings]** and inputting the password, proceed to the second-level menu. Detailed configuration parameters can be found in Chapter 6 Settings.

Accrue list	🧶 🤨 🛎 😁 🍽	2023-05-28 13:51:56
Channel1	몷System eport	0/0
NO.	//Input	Accrue Value
	G Output	
b (History		
	😔 Flow	
Bowerdown	⊜ Acc	
Export		
About		
🧿 Settings 🛛 🔒		

Fig.27 Second-level menu

6 Settings

This chapter introduces the individual configuration parameters of instrument.

6.1 System settings

Setting the basic parameters of the recorder; correct configuration of the parameters ensures the normal operation of the recorder.

System	2023-05-28 13:52:08
Device Name	RECORD
System Time	2023-05-28 13:52:08
Time Format	YY-MM-DD
Password	****
Interval	ls
Language	English
Cold Compensation	Manual
Temp Value(°C)	25.0
Air Pressure(MPa)	0.101325
Auto export time	02:15:00

Fig.28 System settings

Table 18	Description	of System	configuration	items
----------	-------------	-----------	---------------	-------

Parameter	Function	Parameter range	
	Set device name	16-character (numeric or	
Device Name	Set device name	alphabetic) or 5-character Chinese	
		2000-2099 (When the set time is	
Sustam Time	Set instrument time	earlier than the current system	
System Time	Set instrument time	time, data within the specified time	
		range will be cleared)	
Time Formet	Set time display	YY-MM-DD, DD-MM-YY,MM-DD-YY	
Time Format	format		
Password	Set password	0000~9999	
		1s, 2s, 5s, 10s, 15s, 30s, 1 min, 2	
Interval	Set recording interval	min, 5 min, 10 min, 15 min, 15 min,	
		1h. [Note 1]	
	Select system	Chinaga English Kanaga Spanish	
Language	language	Chinese, English, Korean, Spanish	

Parameter	Function	Parameter range
Cold Compensation	Set cold compensation mode	Auto / Manual
Temp Value (℃)	Compensation temperature	When the cold junction compensation is set to manual, a fixed compensation temperature (ranging from -50°C to 110°C) can be set here. If set to automatic mode, no operation is required for this item.
Air Pressure (MPa)	Environmental air pressure setting	0 ~ 999999. The default setting is standard atmospheric pressure, which is 0.101325 MPa.
Auto export time	Set daily automatic transfer time	00: 00: 00~23: 59: 59
Reset Config	Reset all setting parameters and data of the recorder	Confirm or cancel. Please be cautious when operating!

Note 1:

The recorder records sampled data in real-time at preset intervals, with the recording interval selectable from: 1 second, 2 seconds, 5 seconds, 10 seconds, 15 seconds, 30 seconds, 1 minute, 2 minutes, 5 minutes, 10 minutes, 30 minutes, and 1 hour. The default is 1 second.

When the storage space for data recording is full, it will cycle and overwrite. The duration of recording can be dynamically adjusted based on the number of channels and the recording interval. For example, the calculation of recording duration is as follows: Assuming a base interval of 1 second and a maximum of 48 channels, it can record for 13 days. The continuous storage duration varies with the number of channels, as detailed below:

Recording			Num	ber of Cha	innel		
Interval	1	2	3-4	5~8	9~12	13~16	17~20
1s	631d	315d	158d	79d	52d	39d	31d
2s	1262d	630d	316d	158d	104d	78d	62d
5s	3155d	1575d	790d	395d	260d	195d	155d
	21~24	25~28	29~32	33~36	37~40	41~44	45~48
1s	26d	22d	20d	17d	16d	14d	13d
2ss	52d	44d	40d	34d	32d	28d	26d
5s	130d	110d	100d	85d	80d	70d	65d

Table 19 Continuous storage duration

(Note: The number of days stored at different time intervals is calculated by multiplying the recording interval in seconds based on a 1-second time interval.

6.2 Input settings

The recorder has a 3-terminal versatile input design for its input channels, capable of accepting inputs of current in mA, voltage in V, voltage in mV, thermocouples, thermistors, resistors, and analog signals (for demonstration purposes). Different signal types can be achieved simply by setting the input channel parameters.

Input			2023-05-28 13:52:20
Channel	AI01	Тар	CH01
Signal Type	Simulation	Coef K	1.000
Signal	SIN_WAVE	Coef B	0.00
Unit	mV	Filter	Os
Decimal places		Broke	XXXXXX
lower range limit	0.000		Alarm
Upper range limit	100.000		Copy config

Fig.29 Input settings

Parameter	Function	Parameter range	
Channel	Select the channel for	AI01-AI48	
Channel	settings	(as shown in actual display)	
		Current (mA), Voltage (V), Millivolts	
Signal Type	Set the channel signal	(mV), Thermocouple, Thermistor,	
Cigilar Type	type	Resistance, and Analog Signals,	
		[Note 2]	
Signal	Configure signal	[Note 2]	
Unit	Set the unit		
Decimal Places Set decimal places		Set range: 0 to 3, switch between	
Beennan naces		options using Left/Right keys.	
Lower range limit	Set range lower limit	-999999~999999	
Upper range limit	Set range upper limit	-999999~999999	
Тад	Set rag number of the	16-digit (numeric or alphabetic) or	
iay	channel	5-character Chinese	
Coef K	K value for the equation	-999.999~999.999	
	Y=K_X+B		
Coef B	B value for the equation	-9999 99~9999 99	
	Y=K_X+B		
	Parameters for filter; the		
Filter	larger the data, the	05~305	
	smoother the value		
	change.		
	When the channel signal		
	is disconnected (for types		
Broke	like thermocouple,	XXXXX Upper range limit lower	
Broke	thermistor, resistor, or	range limit. HOLD	
	voltage mv), the channel		
	display configuration.		
Alarm Setun	Access the Alarm Setup	Four types of alarm settings:	
Alarm Selup	Screen	High-high alarm (HH), high alarm	

Table 20 Description of Input configuration items

Parameter	Function	Parameter range
		(Hi), low alarm (Lo), and low-low
		alarm (LL). [Note 3]
	Copy the current channel	
Copy config	configuration to other	[Note 4]
	channels for quick setup	

Note 2:

Table 21 Signal Types and Signal settings

Signal Type	Signal		
Current (mA)	(4~20)mA, (0~20)mA(0~10)mA		
Voltage (V)	(0~5)V, (1~5)V, (-5~5)V, (0~10)V, (2~10)V, (0~10)V,		
Voltage (V)	(0~20)mV, (-20~20)mV, (0~100)mV, (-100~100)mV,		
Thermocouple	K, S, B, E, J, T, R, N, WRe5-26, WRe3-25		
Thermistor	PT100, JPT100, PT1000, Cu50, Cu53, Cu100		
Resistance	(0~400)Ω, (0~4000)Ω,		
Analog signal	SIN_WAVE, COS_WAVE, TRI_WAVE, SQR_WAVE		
Frequency			
(customizable)	(0~10000)H2		

Note 3:

Table 22 Alarm configuration description

Alarm Type	Parameter	Function	Parameter range
	High-High Alarm values	Set High-high alarm value	-999999~999999
	State	Set alarm state	Enable, disable
Hign-high	High-High Alarm	Set High-high alarm	Disable, Relay 1-Relay 22
Alarm	Output	output terminal	(as actually displayed)
	Delay delay	Set Alarm delay time	0s~120s
	Hysteresis	Set Alarm hysteresis	0~999999
	High Alarm values	Set High alarm value	-999999~999999
Hign Alarm	State	Set alarm state	Enable, disable

Alarm Type	Parameter	Function	Parameter range
		Set High alarm output	Disable, Relay 1-Relay 22
	High Alarm Oulput	terminal	(as actually displayed)
	Delay delay	Set Alarm delay time	0s~120s
	Hysteresis	Set Alarm hysteresis	0~999999
	Low Alarm values	Set Low alarm value	-999999~999999
	State	Set alarm state	Enable, disable
		Set Low alarm output	Disable, Relay 1-Relay 22
Low Alarm	Low Alarm Output	terminal	(as actually displayed)
	Delay delay	Set Alarm delay time	0s~120s
	Hysteresis	Set Alarm hysteresis	0~999999
	Low-low Alarm values	Set Low-low alarm value	-999999~999999
	State	Set alarm state	Enable, disable
Low-low	Low-low Alarm	Set Low-low alarm output	Disable, Relay 1-Relay 22
Alarm	Output	terminal	(as actually displayed))
	Delay delay	Set Alarm delay time	0s~120s
	Hysteresis	Set Alarm hysteresis	0~999999

The relay delay and hysteresis of different alarm types are independently set. Hysteresis prevents repeated alarm when the measures date fluctuates from the alarm point. The high- or low-level alarm and Hysteresis figure is showed in Figure 30. At high level alarm, when the actual engineering value is larger than or equal to the alarm value, the recorder enters into the alarm state. When the input is reduced, the actual engineering value is less than the alarm value, but the recorder will not exit the alarm state immediately. Until the actual engineering value is less than the alarm value and Hysteresis value, will the recorder exit the alarm state. The same is for low level alarm.

Fig.30 High and Low alarm and Hysteresis

[Note 4]

Copy configuration : Please select the copy channel first, then set the paste channel (all the channels from the start channel to the end channel will be pasted with the same configuration as the copy channel). As shown in the figure, this means that all channels from channel 3 to channel 20 (including channels 3 and 20 themselves) will be copied with the same configuration as channel 1.

Input			20	23-05-28 13:52	2:41
Channel	AI01	Тар		СН01	
Signal Type				1.000	
Signal	Copy channel	AI01		0.00	
Unit	Paste channels			0s	
Decimal places				XXXXXX	
lower range limit	A101 -	AIOI		Alarm	
Upper range limit	ОК	Cancel		Copy config	

Fig.31 Copy configuration

6.3 Output settings

The current output module provides 6 independent analog outputs. It can convert and output analog input channels and flow channels.

Output	2023-05-28 13:5	2:51
	A001	
State	Disable	
signal source	AI01	
Signal Type	(4~20)mA	
Decimal places	3	
lower range limit	0.000	
Upper range limit	100.000	
Zero Calibration	0.000	
	Copy config	

Fig.32 Output settings

Table 23 Description of output configuration parameter

Parameter	Function	Parameter Range
Channel	Select the configured AO (Analog Output) channel	AO01~AO06
State	Enable or disable the channel	Enable, disable
Signal Source	The channel to output	Al01~Al48, flow 1 ~ flow 6 (as actually displayed)
Signal Type	Type of analog output	(4~20)mA,(0~20)mA,(0~10)mA, (0~5)V, (1~5)V, (0~10)V
Decimal Places	Set the number of decimal places	0~3
Lower range limit	The lower limit of the channel	-999999~999999
Upper range ILimit	The upper limit of the channel	-999999~999999
Zero Calibration	Adjustable zero, unit: mA	-999.999~999.999
Copy config.	Copy the current channel configuration	

[Note 5]

 $Current output = \frac{Signal source * (Output high limit - Output low limit)}{Signal source high limit - Low limit} + Output low limit + Zero calibration$

6.4 Function settings

Fig.33 Function setting

6.4.1 Communication setting

This product supports both RS485 communication interface and Ethernet communication interface, which can be configured simultaneously. RS485 communication adopts the Modbus RTU communication protocol, while Ethernet communication adopts the Modbus TCP communication protocol.

Communication Interface	Parameter	Function	Parameter range	
	Address	Device address	1~247 (default 1)	
	Doud rate	Communication	1200, 4800, 9600 (default),	
	Baud rate	rate	19200, 57600, 115200	
RS485	Derity	Communication	Nana(dafault) Odd Evan	
	Parity	check	None(delauit), Odd, Even	
	Float Format	Floating-point	0123, 1032 (default), 2301, 321	
		format		
	IP Address	IP address	Default 192.168.10.245	
	Subnet mask	Subnet mask	Default 255.255.255.0	
Ethernet	Gateway	Default gateway	Default 192.168.10.2	
	TPC Port	TPC port	502	
	Firmware	Firmware		
	Update	update		

 Table 24 Description of Communication configuration

Communication Interface	Parameter	Function	Parameter range	
	Note: After setting the Ethernet parameters, the instrument must			
	be powered off and then powered on once for the settings to take			
	effect.			

6.4.2 Data Clear

Item	Function Description
Clear Alarm list	Clear all alarm lists
Clear Operation list	Clear all operation lists
Clear Powerdown list	Clear all powerdowan lists
Clear Acc report	Clear all accumulate reports

6.4.3 U disk

The instrument supports saving the current configuration to a U disk, as well as reading the configuration file from the U disk.

Item	Description	File Format
Export Config	Export current instrument configuration	CFG (.cfg)
Import Config	Read instrument configuration	
Import Comig	from USB	
Firmware Update	Perform firmware update	
Format USB	Perform USB flash disk formatting	FAT16/32

Table 26 Description of U disk operation configuration

(1) When transferring data to a USB, please use a dedicated USB for reading and writing to avoid potential failure in data export.

(2) File storage path: All files of this instrument are stored in the corresponding folders under the root directory of the USB flash disk labeled [RNX]. The [Bmp] folder contains recorded screenshots, the [Config] folder holds configuration files, the [History] folder stores historical records, and the [Information] folder includes various types of information, such as alarm messages.

File	Subdirectory	File Name
	A. P. 4	H220905091650.csv/
Historical records	/History	H220905091650.mda
Accrue list	/Information	R20240511085609.csv
Alarm records	/Information	A20240511085602.csv
Powerdown Records	/Information	P20240511085606.csv
Operation Records	/Information	O20240511085608.csv

Table 27 Example of USB file names

6.4.4 Display setting

Table 28 Description of Display configuration

Parameter	Function	Parameter range
Backlight	Adjust screen brightness	1~5 levels of brightness adjustable, with 1 being the lowest brightness and 5 the highest.
Backlight Off	Set screen to automatically turn off after a period of inactivity	Always on, 5 min, 10 min, 15 min, 30 min, 1h.
Cycle Time	Set the single display time for the cyclic display channel	Disable, 5s, 15s and 30s.
Startup screen	Set the startup screen	Overview screen, single display screen, group display screen, bar graph screen, real-time curve screen, flow screen,flow, accrue, and accrue list.
Bar chart direction	Set the bar graph direction	Vertical, horizontal.
Number of grouped channels	Set the number of channels displayed on a single digital screen	4, 6, 12, 16, 24

Parameter	Function	Parameter range
	Set the default group	
Channel	channel bar graph and	
combination	curve colors, and	
	customize signal groups	

• Description of channel combination settings

	Channel combination	2023-01-13	22:59:09
1-	- Groups	1	
2	- Channel	Ch01	
<u>(3)</u> —	 signal source 		
<u>(4)</u>	— Color	0xfcc6	<mark>5</mark>

Fig.34 Channel combination setting

① Groups: 1~8 are the default groups, corresponding to 6 channels of signals. Custom group1, Custom group2 are custom groups, where you can select the signal source from the channels, and each group can select up to 6 channels at most.

 Channels: with a default configuration of six channels per group (CH01~ CH06). ③ Signal source. When the group is selected as 1 to 8, channels correspond to signal sources in sequence, unmodifiable, as shown in the figure. For example, Channel CH01's source is Al01, Channel CH02's is Al02, and so on. When the group is set to Custom Combination 1 and Custom Combination 2, Channels CH01 to CH06 can be customized for signal sources, as shown below, where Channel CH01's source can be set to Al06.

Channel combination	2023-04-08 11:40:14
Groups	Custom group2
Channel	CH01
signal source	AI08
Color	0xfcc6

Fig.36 Custom signal source

When a user set a custom signal source for a group, the main page of the recorder displays not only the default group's screens (digital screen, bar chart screen, and real-time curve screen) but also the custom group's screens, as shown in Figures $37 \sim 39$.

Custom group2	2	••	2023-04-08 11:41:32
сноб	mA	СНОЗ	mA
26.526	5 :	73	.474
Flow1	m³/h	CH05	mA
77.960)	0.	122
Flow3	m³/h	CH11	mA
+	0000	0.	.122

Fig.37 Custom Group - group display Screen

Fig.39 Custom group – real-time curve screen

④ Color: Users can set the color of the bar chart and curve for the corresponding signal, and generate the required color by setting the corresponding three primary colors.

Channel combin	ation			2024-05-17	14:17:26
Groups				1	
Channel					
signal source	RED	248			
Color	GREEN	155			
	BLUE	51	-		
ļ					

Fig.40 Color setting interface

6.5 Flow settings

Flow function can be used to measure media such as superheated steam, saturated steam, general gas, mixed gas, natural gas, gas, water, hot water, chemical liquid, and chemical liquid. It is suitable for the matching use of flow products such as vortex flowmeters, turbine flowmeters, V-cone flowmeters, bend flowmeters, electromagnetic flowmeters, mass flowmeters, orifice flowmeters, nozzle flowmeters, and classic Venturi tubes.

Flow	2023-05-28 13:55:26
Channel	01
State	Enable
Unit	m³/h
signal source	AI01
Decimal places	3
lower range limit	0.000
Upper range limit	100.000
Flow Model	NO SQRT
Flow cut	0.000
Flow K	1.000

Fig.41 Flow setting

Table 29 Description of flow setting configuration

Parameter	Description	Parameter range	
Channel	Select the flow channel for	01~08	
	settings		
Stat	Enable or disable this channel	Enable, disable	
Linit	Units displayed in the flow	Customized string, with the	
Offic	screen	default unit being m³/h.	
Signal course	Channel of the flow signal	AI01~AI48	
	Channel of the now signal	(as actually displayed)	
Desimal places	Set the decimal places for	0. 2	
Decimal places	flow	0~3	
1	Lower range limit after flow	000000 000000	
Lower range Limit	compensation	-999999~999999	
	Upper range limit after flow	000000 000000	
Upper range Limit	compensation	-999999~999999	
Flow model	Select a formula suitable for	No SQRT, HAVE UNSQRT,	

Parameter	Description	Parameter range		
	the throttling device	HAVE SQRT [Note 6]		
Flow cut	Small flow cutoff	-999999~999999		
Flow K	[Note 1] K in the formula	-999999~999999		
		No Compensation,		
		Temp Compensation, Pre		
Componention	Select the algorithm for	Compensation, Manual Density,		
Compensation	density compensation	Superheated Steam, Saturated		
		Steam P, Saturated Steam T,		
		General Gases. [Note 7]		
Pressure source	P in density compensation, unit kPa	None, Al01~Al48		
Design Pressure (kPa)	Can be set manually			
Temp source	T in density compensation, unit °C	None, Al01~Al48		
Design Temp (°C)	Can be set manually			
Manual Density	Set the density value of the substance	-999999~999999		
Compensation Coef A	Compensate flow with coefficient A	-999999~999999		
Compensation Coef B	Compensate flow with coefficient B	-999999~999999		
Alorm	Entor the clarm patting paraon	Please refer to the "Alarm		
Alaliii		Setting" in the Input Setting.		
	Convithe current channel	Please refer to the "Copy		
Copy Config.	configuration information	Configuration" in the Input		
		Setting.		

[Note 6]

There are many ways to measure flow, including volumetric, speed, pulse frequency, and mass-based methods, among others. This instrument categorizes these into three types:

Flow Model	Formula
No SQRT,	$Q = \frac{I_f \rho}{K}$
HAVE UNSQRT	$Q = K^* \sqrt{\Delta P^* \rho}$
HAVE SQRT	$Q = K * \Delta P * \sqrt{\rho}$

	Table 30	Flow	Models	and	Formulas
--	----------	------	--------	-----	----------

Where:

Q: Mass flow rate

K: Mass flow rate

 ρ : Fluid density

 ΔP : Differential pressure signal

If : Flow value for non-orifice plate type restriction devices, which can be an electrical current signal or a frequency signal

[Note 7]

From the flow model, it can be observed that the calculation of mass flow rate is directly related to the fluid density. Since the density of gases varies significantly with different operating conditions, it is necessary to calculate the density under specific operating conditions. The table below outlines the methods for calculating different gas densities.

Compensation Mode	Calculation Method	Applicable Fluids
Manual Density	ρ: Calculate based on [Manual Density	Liquids
Superheated Steam	ρ: Calculate based on IAPWS-IF97	Superheated steam

Table 31 Methods for Calculating Different Gas Densities

Compensation Mode	Calculation Method	Applicable Fluids
Saturated Steam P	ρ: Calculate through pressure, based on IAPWS-IF97	Saturated steam
Saturated Steam t	ρ: Calculate through temperature, based on IAPWS-IF97	Saturated steam
General Gases	ρ: Calculate based on ideal gas equation, require setting of [reference density]	Gases such as oxygen, nitrogen, and hydrogen
No Compensation	ρ: Calculate based on Constant 1	Measure volume flow
Temp Compensation	ρ=A+B/t, A B are linear compensation coefficients	
Pre Compensation	ρ= A+B*P, A B are linear compensation coefficients	

6.6 Accumulation settings

The accumulation function accumulates the selected signal source based on hours, days, and months, forming hourly reports, daily reports, and monthly reports.

Acc	2023-05-28 13:55:37		
	01		
State	Enable		
Unit	m ³		
signal source	Al01		
Accumulation multiplier	1.000		
Accumulated initial value	0.0		
	Reset Acc InitVal		
	Copy config		

Fig.42 Accumulation setting

Table 32	Description of	faccumulated	Setting	Configuration	Items
----------	----------------	--------------	---------	---------------	-------

Parameter	Description	Parameter Range
Channel	Select the channel for setting	01~08
State	Enable or disable this channel	Enable, Enable
Unit	Unit displayed in the accumulation screen	Custom string
Signal Source	Channel to be accumulated	AI01~AI48, Flow 1~Flow 8
Accumulation Multiplier	Accumulate by multiplying with the accumulation	-999999~999999

Parameter	Description	Parameter Range		
	multiplier			
Accumulated initial value	Initial value at the time of reset	-999999~999999		
Reset Acc InitVal	Reset this channel with the accumulation initial value	[Note 8]		
Copy Config	Copy the configuration information of the current channel	Please refer to "Copy Configuration" in Input Setting		

[Note 8]

The modified accumulation initial value will only take effect after re-enabling the configuration.

7 Fault analysis and troubleshooting

In order to maintain the reliability of the instrument and maintain its good working condition for a longer period of time, please regularly inspect and maintain it to ensure that the installation and usage environment of the instrument meet the requirements, and conduct wiring and other operations according to normal procedures. When the instrument malfunctions, it should be resolved according to the methods described in this manual.

7.1 Regular inspection and maintenance

- •Inspect all components of the instrument for damage, corrosion, and remove surface attachments;
- •Check if all components are loose;
- •Check the grounding protection to ensure that the protection measures are complete;
- •Ensure that the ventilation holes of the instrument casing are unobstructed to prevent high-temperature faults, abnormal actions, reduced lifespan, and fires.

7.2 Fault handling

7.2.1 LCD screen without display

8 Communication

The paperless recorder is equipped with three types of communication interfaces: 485 input, 485 output, and Ethernet. When functioning as a 485 output or Ethernet communication device, the recorder operates as a slave (server), allowing a master (client) to retrieve the data monitored by the device via the communication protocol. Conversely, when acting as a 485 input, the recorder assumes the role of a master and can configure the interface to read data from the monitoring equipment.

8.1 Protocol overview

8.1.1 Modbus Serial

The Modbus protocol over serial port can operate on RS-232, RS-422, or RS-485 bus lines. The character format for serial Modbus is as follows:

- 1 start bit.
- 8 data bits, with the least significant bit sent first.
- 1 parity bit, which is omitted if no parity checking is required.
- 1 stop bit.

The detailed character format is as follows:

Parity:

Start bit	1	2	3	4	5	6	7	8	Parity bit	Stop bit
No parity:										
Start bit	1	2	3	4	5	6	7	8	Stop bit	Stop bit

Note: The above represents the standard recommended method. However, in practice, when the R series meters communicate without parity, they use a 1-bit stop bit method, as shown below.

Start bit	1	2	3	4	5	6	7	8	Stop bit

Frame Format:

For Modbus over serial lines, the additional address field uses a 1-byte slave address, and the data integrity field uses a 2-byte CRC (Cyclic Redundancy Check) for error detection. Therefore, the ADU (Application Data Unit) frame format for serial line Modbus is as follows:

Slave address	Function code	Command data	CRC check
(1 bit)	(1 bit)	(0~252 bits)	(2 bits)

Slave Address:

The address field in the message frame consists of 8 bits, and the address range for a single device is from 1 to 254. The master device activates the slave device by placing the address of the slave device it wishes to communicate with in the address field of the message. When the slave device sends a response message, it places its own address in the address field of the response message, so that the master device knows which device is responding. Address 0 is used as a broadcast address to enable all slave devices to recognize it.

CRC Check:

When using the RTU mode for character frames, the error detection field contains a 16-bit value (realized using two 8-bit characters). The content of the error detection field is obtained through a cyclic redundancy check method applied to the message content. The CRC field is appended at the end of the message, with the low byte added first, followed by the high byte. Therefore, the high byte of the CRC is the last byte sent in the message.

8.1.2 Modbus TCP

Modbus TCP operates over TCP/IP networks. This section mainly discusses the format, composition, and significance of the Modbus frames carried over Modbus/TCP networks. All Modbus TCP frames are sent over TCP register port 502.

Frame Format:

For Modbus over TCP/IP, an additional address field of 7 bytes is used in the MBAP header, and the Modbus frame itself does not have a data checksum field. The accuracy of transmitted data is verified by the mechanisms of TCP/IP and link layer (Ethernet) checksums. Therefore, the ADU frame format of Modbus TCP is as follows.

MBAP header	Function code	Command data
(7 bits)	(1 bit)	(0~252 bits)

MBAP header MODBUS Application Protocol header.

The format of the MBAP prefix is as follows:

Unit	length byte	description
Transaction process identifier	2	initialized by the client and copied by the server. typically 0.
Protocol identifier	2	0 denotes modbus protocol. initiated by the client, copied by the server.
Length of subsequent data	2	for modbus, the high byte is always 0.
Unit identifier	1	generally the slave address in serial mode

8.2 Register address

Table 33 Data information address list

Name	Starting	Register	Attributes	Data	Function
	Address Count			Туре	Code
AI Engineering Quantity	0x2000	Ν	Read only	float	0x03
AI Channel Quality Code	0x2080	Ν	Read only	short	0x03
Flow Channel Value	0x2100	М	Read only	float	0x03
Flow Channel State	0x2150	М	Read only	short	0x03
Integer part of flow channel total	0,2200	NA	Dood only	int	0,02
accumulated value	0,2200	IVI	Reau Only	ш	0,03
accumulated Value of Flow	0.2210	NA	Bood only	floot	0,02
Channel Over Time	0x2310	IVI	Read only	noat	0x03
Daily accumulated Value of	0x2360	N/	Pood only	float	0×03
Flow Channel	0x2300	IVI	Read only	noat	0x03
Monthly accumulated Value of					
Flow Channel and Accumulated	0x23B0	М	Read only	float	0x03
Channel					
Real-time Value of Operational	0.2410	NA	Bood only	floot	0,02
Channel	072410	IVI	Read Only	noat	0203

News	Starting	Register	A thuib ut a a	Data	Function
Name	Address	Count	Allfibules	Туре	Code
Fractional Part of Flow Channel	0.2140		Deed ank	fleet	0.402
Total accumulated Value	0x2440	IVI	Read only	lloat	0x03
Total accumulated Value of Flow	,				
Channel Double-Precision	0x2470	М	Read only	double	0x03
Floating-Point Value					
AO Engineering Quantity	0.0400	_	Deed ank	fleet	0.402
Output Value	0XZ4B0	P	Read only	lloat	0x03
DO Output State Value	0x24E0	Q	Read only	Boolean	0x01
FI Frequency Input Value	0x2510	L	Read only	float	0x03
FI Channel State Value	0x2530	L	Read only	short	0x03

Table 34 Register address

Name	Register	Function	Data	Description	
	Address	Code	Туре		
	A	I Enginee	ring Quar	ntity	
Engineering				Note and anneas with a default	
Quantity of	0x2000	0x03	float		
Channel 1				value of 1032	
Engineering					
Quantity of	0x2002	0x03	float		
Channel 2					
			•••	•••	
Engineering				Hexadecimal: 0x2000,	
Engineering		0.00	a .	Decimal: (N-1) * 2.	
Quantity of	0x2000+(N-1)*2	0x03	float	For example, if N=48, the	
Channel N				register address is 0x205E.	
AI Quality Code					
Quality Cada at				BIT0: 0 - Normal, 1 - HH alarm	
	0x2080	0x03	short	BIT1: 0 - Normal, 1 - HH alarm	
				BIT2: 0 - Normal, 1 - L alarm	

Name	Register Address	Function Code	Data Type	Description
				BIT3: 0 - Normal, 1 - LL alarm
				BIT4: 0 - Normal,
				1 - Disconnection
				BIT5: 0 - Normal,
				1 - Lower- limit alarm
				BIT6: 0 - Normal,
				1 - Upper -limit alarm
Quality Code of Channel 2	0x2081	0x03	short	
	•••		•••	•••
				Hexadecimal: 0x2080 Decimal:
Quality Code of	0,2000 (NL 1)	0,02	short	N - 1
Channel N	0x2060+(IN-1)	0x03		Example: N = 48, Register
				address = 0x20AF
	Real-t	ime Value	e of Flow (Channel
Flow Value of Channel 1	0x2100	0x03	float	Flow rate real-time value
Flow Value of Channel 2	0x2102	0x03	float	Flow rate real-time value
			•••	
Flow Value of Channel N	0x2100+(N-1)*2	0x03	float	Hexadecimal: 0x2100 Decimal: (N - 1) * 2 Example: N = 8, Register address = 0x210E
	Stat	e Value c	of Flow Ch	annel
				BIT0: 0 - Normal, 1 - HH alarm
State of Flow	0,2450	0,000	short	BITT: U - Normal, T - HH alarm
Channel 1	UX2150	0x03		BIT2: 0 Normal 1 L alarm
				BIT4: 0 - Normal

Namo	Register	Function	Data	Description
Iname	Address	Code	Туре	Description
				1 - Disconnection
				BIT5: 0 - Normal,
				1 - Lower- limit alarm
				BIT6: 0 - Normal,
				1 - Upper -limit alarm
State of Flow	0.0454	0.02	a la a ut	
Channel 2	0x2151	0x03	snort	
	•••		•••	•••
				Hexadecimal: 0x2150
State of Flow	0.2450.(1.4)	0.02	a la a ut	Decimal: N-1
Channel N	0x2150+(N-1)	0x03	snort	Example: N=8, Register
				address = 0x2157
	Integer Part of Fl	ow Chan	nel Total a	accumulated Value
Integer part of				
flow channel 1				
total	0x22C0	0x03	int	
accumulated				
value				
Integer part of				
flow channel 2				
total	0x22C2	0x03	int	
accumulated				
value				
			•••	•••
Integer part of				
flow channel n				
total	0x22C0+(N-1)*2	0x03	float	Decimal. (N-1) Z
accumulated				Example: $N=0$, Register
value				address = UX220E

Name	Register	Function	Data	Description	
	Accumulated	Value of	Flow Cha	nnel Over Time	
Accumulated Value of Flow Channel 1 Over Time	0x2310	0x03	float		
Accumulated Value of Flow Channel 2 Over Time	0x2312	0x03	float		
Accumulated Value of Flow Channel N Over Time	0x2310+(N-1)*2	0x03	float	Hexadecimal: 0x2310 Decimal: (N-1) *2 Example: N=8, Register address =0x231E	
Daily Accumulated Value of Flow Channel					
Daily accumulated Value of Flow Channel 1	0x2360	0x03	float		
Daily accumulated Value of Flow Channel 2	0x2362	0x03	float		
•••	•••			•••	
Daily accumulated Value of Flow Channel N	0x2360+(N-1)*2	0x03	float	Hexadecimal: 0x2360 Decimal: (N-1) *2 Example: N=8, Register address =0x236E	

Name	Register	Function	Data	Description		
Name	Address	Code	Туре	Description		
Monthly Accumulated Value of Flow Channel						
Monthly accumulated	0x23B0	0x03	float			
Value of Flow Channel 1						
Monthly accumulated Value of Flow	0x23B2	0x03	float			
Channel 2						
	•••		•••	•••		
Monthly accumulated Value of Flow Channel N	0x23B0+(N-1)*2	0x03	float	Hexadecimal: 0x23B0 Decimal: (N-1) *2 Example: N=8, Register address =0x23BE		
Real-Time Value of Calculation Channel						
Real-Time Value of Calculation Channel 1	0x2410	0x03	float			
Real-Time Value of Calculation Channel 2	0x2412	0x03	float			
			•••			
Real-Time Value of Calculation Channel N	0x2410+(N-1)*2	0x03	float	Hexadecimal: 0x2410 Decimal: (N-1) *2 Example: N=8, Register address =0x241E		

Name	Register	Function	Data	Description
Er	Address		I ype	Acaccumulated Value
Fractional Part				
of Flow				
Channel 1				
Total	0x2440	0x03	float	
Accumulated				
Value				
Fractional Part				
of Flow				
Channel 2	0.0140			
Total	0x2442	0x03	float	
Accumulated				
Value				
				•••
Fractional Part				
of Flow				Hexadecimal: 0x2440
Channel N	0,2440, (NL 4)*2	0,02	floot	Decimal: (N-1) *2
Total	0x2440+(N-1)2	0x03	noat	Example: N=8, Register
Accumulated				address =0x244E
Value				
Tota	al Accumulated V	alue of F	low Chanı	nel (Double-Precision)
Total	0x2470			
Accumulated				
Value of Flow		0v03	double	
Channel 1		0.000	double	
(Double-Precisi				
on)				
Total	0x2474	0v03	double	
Accumulated		0,03	double	

Name	Register	Function	Data	Description	
Iname	Address	Code	Туре	Description	
Value of Flow					
Channel 2					
(Double-Precisi					
on)					
	•••			•••	
Total					
Accumulated				Hexadecimal: 0x2470	
Value of Flow	0-0470-(014)*4	000		Decimal: (N-1) *4	
Channel N	UX2470+(N-1)*4	0x03	aouble	Example: N=8, Register	
(Double-Precisi				address =0x248C	
on)					
AO Engineering Quantity Value					
Engineering	0x24B0				
Quantity of AO		0x03	float		
Channel 1					
Engineering	0x24B2				
Quantity of AO		0x03	float		
Channel 2					
•••	•••		•••	•••	
				Hexadecimal: 0x24B0	
Engineering	0.2400.(N 4)*2	0.02	fleat	Decimal: (N-1) *2	
Quantity of AO	UX24B0+(IN-T)*2	0x03	noat	Example: N=6, Register	
Channel N				address =0x24BA	
DO Output State Value					
				DO Relay Value	
DO Channel 1	0x24E0	0x01	Boolean	0: Open	
State				1: Closed	
DO Channel 2	0x24F1	0x01	Boolean		
State			Looioun		

Namo	Register	Function	Data	Description		
Iname	Address	Code	Туре	Description		
•••	•••	•••	•••	•••		
				Hexadecimal: 0x24E0		
DO Channel N		0.01	Pooloon	Decimal: N-1		
State	0x24E0+(N-1)	0x01	Boolean	Example: N=22, Register		
		Frequency Ox03 Ox03 Ox03 Cx03 Cx03 Cx03 Cx03 Cx03 Cx03 Cx04 Cx04 Cx04 Cx04 Cx04 Cx04 Cx04 Cx04		address =0x24F5		
	F	requency	/ Input Val	lue		
Input Value of				FI frequency input value,		
Frequency	0x2510	0x03	float	number of pulses detected per		
Channel 1				second. Unit: Hz		
Input Value of						
Frequency	0x2512	0x03	float			
Channel 2						
•••	•••	•••	•••	•••		
Innut Value of				Hexadecimal: 0x2510		
Froquency	0v2510±/N 1)*2	 2 0x03	float	Decimal: (N-1) *2		
Channel N	0,2310+(11-1) 2	0x03	noat	Example: N=6, Register		
Channel N		0x03 0x03 		address =0x251A		
State Value of FI Channel						
				The State of bits 0-6 in the		
				register value is as follows:		
				BIT0: 0 - Normal, 1 - High-high		
				alarm		
State Value of				BIT1: 0 - Normal, 1 - High alarm		
El Channol 1	0x2530	0x03	short	BIT2: 0 - Normal, 1 - Low alarm		
FI Channel T				BIT3: 0 - Normal, 1 - Low-low		
				alarm		
				BIT4: 0 - Normal, 1 -		
				Disconnection		
				BIT5: 0 - Normal, 1 – Lower-limit		

Nomo	Register	Function	Data	Description
Name	Address	Code	Туре	Description
				alarm
				BIT6: 0 - Normal, 1 – Upper-limit
				alarm
State Value of	0x2521	0,02	abort	
FI Channel 2	0.2551	0x03	SHOL	
	•••		•••	•••
				Hexadecimal: 0x2530
State Value of	0.2520 (NL 1)	0,02	abort	Decimal: N-1
FI Channel N	0x2530+(N-T)	0x03	snort	Example: N=6, Register
				address =0x2535

8.3 Communication example

8.3.1 485 Communication

Example: Reading the engineering quantity of channel 1

Transmit data:

01 03 20 00 00 02 CF CB

Description:

01: Instrument address (configurable)

03: Modbus command 03

20 00: Register address 0x2000

00 02: Number of register 2

CF CB: CRC check

Return data:

01 03 04 00 00 3F 80 EA 63

Description:

01: Instrument address

03: Modbus command for data retrieval

04: Four bytes of returned data

00 00 3F 80: Floating-point number (F 1-0-3-2, configurable), representing 1.00

EA 63: CRC check
8.3.2 Ethernet Communication

Modbus TCP operates on a TCP/IP network. For Modbus based on TCP/IP, the additional address field uses a 7-byte MBAP (Modbus Application Protocol) header. The Modbus frame itself does not have a data validation field, and the accuracy of the transmitted data is ensured using the TCP/IP and link layer (Ethernet) validation mechanisms. Consequently, the ADU (Application Data Unit) frame format for Modbus TCP is as follows:

MBAP header	Function code	Command data	
(7 bits)	(1 bit)	(0~252 bits)	

Example: Reading the engineering quantity of channel 1

Transmit data: 00 00 00 00 00 06 01 03 20 00 00 02

Description:

00 00 00 00 00 06: MBAP header

- 01: Instrument address
- 03: Modbus Function Code 03

20 00: Register address 0x2000

00 02: Number of register 2

Return data:

00 00 00 00 00 07 01 03 04 00 00 42 BE

Description: 00 00 00 00 00 07: MBAP Prefix

01: Instrument address

- 03: Modbus function code 03
- 04: Four bytes of returned data
- 00 00 42 BE: Floating-point number (F 1-0-3-2, configurable) representing 95.00

Appendix : Calculation of flow coefficient K

Case 1: Orifice (no extraction of a root for differential pressure), measure the flow of oxygen in Nm3/h.

Process data:	Design	Max	Norm	Min	Unit
absolute pressure	950.000				kPa
temperature	20.0				°C
Flow	40000.00 000	36000.000 00	21500.000 00	10800.00 000	Nm3/h
expansion coefficient	0.9994	1.0000	0.9998	0.9995	-
reynolds	278E+04	25,009E+0 2	14,936E+0 2	75,026E+ 01	-
fluid velocity	12.3963	11.1567	6.6630	3.3470	m/s
pressure loss	0.1066	0.0863	0.0308	0.0078	kPa
differential pressure	1.8400	1.4901	0.5312	0.1340	kPa

Table 35 Calculation sheet

Obtain the following information based on the calculation sheet:

parameter	Value
Design pressure	0.95MPa
Design temperature	20 °C
Design flow	40000Nm3/h
Design differential pressure	1.84kPa

Calculation method:

The oxygen density under standard conditions and design temperature pressure are calculated.

According to the ideal state equation:

$$PV = (mRT / M) = nRT$$
$$PV = mRT / M$$
$$PM / RT = m / V = \rho$$
$$\rho = PM / RT$$

The density under standard conditions is 1.429Kg/m3.

The density under design temperature pressure is 12.485Kg/m3. Calculate according to the formula $Q = K * \sqrt{\Delta P} * \rho$, which is substituted by

design parameters.

$$40000*1.429 = K*\sqrt{1.84*12.485}$$

K=11926.1

Note:

Since the designed flow unit is Nm3/h, first, convert the designed flow unit into standard unit. The flow unit obtained at this time is kg/h. If you want to acquire t/h, you need to reduce K by 1000 times to 11.9261. If you want to acquire Nm3/h, you need to use K to divide by the density under standard conditions 1.429 to obtain 8345.7.